
Two Dimensional Projective Point Matching

Jason Denton & J. Ross Beveridge
Colorado State University

Computer Science Department
Ft. Collins, CO 80523

denton@cs.colostate.edu

Abstract

Point matching is the task of finding a set of correspon-
dences between two sets of points under some geometric
transformation. A local search algorithm for point match-
ing is presented, and shown to be effective at solving prob-
lems where the point sets are related by a projective trans-
formation. Random starts local search is shown to be capa-
ble of solving very difficult point matching problems, and a
heuristic key feature algorithm is presented which can sub-
stantially improve the effectiveness of local search in most
cases.

1. Introduction

Point matching is a problem that arises in many con-
texts. Examples include matching interesting points in
pairs of images and matching points derived from object
models to points extracted from imagery. There are two
components to matching, the correspondence mapping be-
tween points, and the associated geometric transformation
that maps points from one set onto or near corresponding
points in another set. Extensive work has been done for
two-dimensional point sets and lower order geometric trans-
formations [1, 3, 4, 6], such as rigid motion and similar-
ity transforms. Less attention has been paid to higher or-
der transformations such as general two-dimensional affine
transforms, or the projective transformation.

This paper presents new work on two-dimensional point
matching under a three-dimensional projective transforma-
tion. The projective transform is an eight degree of free-
dom transform describing how the two-dimensional projec-
tion of a co-planar three-dimensional point set changes with
changes in camera viewpoint. In practice, this is a good ap-
proximation of how objects on the ground appear in differ-
ent aerial photographs.Our algorithm uses a variant of local
search to find optimal and near optimal point matches. Lo-
cal search is a general and robust search technique which

can be applied to the general point matching problem re-
gardless of the specific problem domain. This algorithm is
shown to solve difficult projective matching problems de-
rived from both aerial and indoor imagery.

2. Point Matching as Optimization

The point matching problem may be stated as the task of
finding a correspondence between model and data points.
This correspondence should, under some optimal pose,
place as many transformed model points close to data points
as possible. The optimal pose should also be physically
probably given what is known about the problem. Extreme
scale changes should be avoided, as should extreme per-
spective effects. These conditions allow for the formulation
of an error function on a set of correspondences.

Ematch =
1

σ2 ∑
i

||P∗(mi)−di||2 +Eomit +S(P∗) (1)

This evaluation function is asymmetric, matching a point
set M designated as the model with data point set D. The
model point participating in the ith pairing is mi, and is
matched to the corresponding data point di. P∗ is the op-
timal transformation or pose which minimizes the sum of
the squared distances between all points mi and their paired
data points di. Eomit is the number of model points which
have no corresponding data point. The value of S(P∗) is a
penalty on degenerate or unlikely poses. Under this formu-
lation point matching becomes the task of finding the set of
correspondence which minimize this function.

Beyond a certain distance, a transformed model point
should not be paired with a data point. This distance, de-
noted by σ, can be thought of as the error bound on a given
data point. If P∗ causes the transformed model point to
be further from its corresponding data point than σ then
this pairing will contribute a value of greater than one to
the error. Since the penalty for leaving a model point un-

matched is one, an algorithm attempting to minimize func-
tion 1 should drop this pairing from the match. Determin-
ing the distance between two points requires the finding of
a square root, so it is more efficient to compare the squared
distance between paired points with the value of σ2.

The formulation of the degeneracy function S(P∗) is crit-
ical to projective point matching. Ideally this function could
be formulated based on a concrete interpretation of P∗. Un-
fortunately, when all points lie in a plane, a unique inter-
pretation of this pose is not generally possible [7]. Instead,
the value of S(P∗) is formulated on the effects of the trans-
formation on the bounding box for the model. The optimal
transformation is applied to the bounding box, and the rel-
ative scale change of each side is evaluated. If largest scale
change exceeds some threshold, usually a factor of two, a
linear penalty is applied. This penalty is weighted by one-
fourth the number of points in the model set. Thus, if the
scale change exceeds the allowable bounds by a factor of
one the penalty applied is equal to omitting one-fourth of
all model points from the match.

For the projective case, it is possible that the optimal
transformation causes the vanishing line to intersect the im-
age plane. Experimentally, this appears to occur in a large
number of cases. To drive search away from such con-
ditions, the inverse of the distance from the center of the
bounding box on the model to the vanishing line, normal-
ized by the size of the bounding box, is added to S(P∗).
When the model has been centered at the origin the distance
from the origin to the vanishing line is simply the quantity
√

g2 +h2, where g and h are parameters of P∗ defined be-
low. It should be noted that determining P∗ requires that the
correspondence in question contains at least four pairs. For
those correspondences where there are fewer pairings than
this S(P∗) is set arbitrarily high.

2.1. Determination of Optimal Pose

The projective transformation for a model point mi can
be stated as

P(mi) =





a b c
d e f
g h 1









x
y
1



 =





u
v
w



 =





u/w
v/w

1





Minimizing the squared Euclidean distance between
paired points is difficult due to the ratio of terms. Fully ex-
panding the transformation shows that the error associated
with the fit between model and data is

Ematch = ∑
i

(

ui −
axi +byi + c
gxi +hyi +1

)2

+

∑
i

(

vi −
dxi + eyi + f
gxi +hyi +1

)2

+

Eomit +S(P∗)

Hartley and Zisserman suggest an approximation where
the terms being squared are multiplied by their denominator
[7]. Thus the previous equation becomes

E f it = (ui(gxi +hyi +1)− (axi +byi + c))2 +

(vi(gxi +hyi +1)− (dxi + eyi + f))2 +

Eomit +S(P∗)

The eight parameters minimizing this modified distance
term may be found by solving the linear equation M′p = B,
where M′ is the 8× 8 upper left sub-block of M, and B is
the upper right column vector of M when

M = ∑
i
(UT

i Ui +V T
i Vi)

Ui = | −xi −yi −1 0 0 0 xiui yiui ui |
Vi = | 0 0 0 −xi −yi −1 xivi yivi vi |
p = | a b c d e f g h |T

Hartley and Zisserman observe that noise in the location
of individual points in either the model or data set can be
lead to instability of the pose estimate [7]. This can create
problems for search algorithms if the pose changes drasti-
cally when pairs are added or dropped. To correct this, both
point sets must be normalized. This normalization consists
of placing the centroid at the origin, and then rescaling the
point set so that the average distance from the origin to each
point is

√
2. Because local search moves through corre-

spondence space, this normalization can be done once at the
beginning of the search process, along with the correspond-
ing adjustment on σ and maximum allowable scale change.
Once the optimal correspondence has been found, the pose
can be estimated based on the original point sets.

3. Local Search

Local search requires that solutions can be evaluated and
a neighbor definition be imposed upon the discrete solution
space. For random starts local search, an arbitrary solu-
tion is chosen as the starting point and every solution in that
neighborhood is evaluated. If an improvement is found lo-
cal search moves to the best solution and searches the new
neighborhood for an improvement. Search terminates when
no improvement can be found.

For point matching the neighborhood for a given solu-
tion can be defined as all correspondences which differ by

only a single model to data pairing, with the restriction that
model points may not match to a data point already paired
with another model point. A null point is introduced so
that model points may go unmatched. Local search seeks
a correspondence which will minimized equation 1, but it
is important to note that, due to the formulation of the er-
ror function, this progress through correspondence space is
guided by the global pose of the model, which is recom-
puted at every step. This is similar to work by Beveridge on
two-dimensional line matching [2].

Experimentally, it appears that initial random solutions
should contain five pairs. This provides enough pairs so
that one pairing may be dropped immediately and the opti-
mal pose can still be estimated. When each random trial is
independent, the probability that a sequence of t trials will
all fail to find the global optima drops as an exponential
function of t [11].

3.1. Key Feature Local Search

The effectiveness of local search is highly dependent on
the quality of the initial solution chosen, so it is worthwhile
to bias the search by choosing an initial solution that is in
some sense near the optimal match. Points which are spa-
tially proximal to each other in one point set may be ex-
pected to match to points which are spatially proximal to
each other in the other data set. This fact can be exploited
by constructing a set of key features that serve as initial so-
lutions. Key features are based upon spatially proximal k
tuples of model and data points. For each model point, the
k− 1 nearest model points are identified, and likewise, for
each data point, the k−1 data points are identified. A com-
plete set of tuples are formed by pairing each model point
with each data point: there are n = md such pairings when
there are m model points and d data points. For each pair-
ing, k−1 proximal model points may match k−1 proximal
data points. Let the ordering of the data points be fixed, then
there are as many such matches as there are permutations of
the k − 1 model points. Thus, there are in total, n(k−1)!
proximal k tuples.

Once all key features have been created, equation 1 can
be applied to rank the tuples and discard those with large
scale changes or other pathologies. Those tuples with low
match error are likely to be good initial matches from which
to start a local search trial, and thus are ranked higher on the
list. Using tuples in this manner to index into possible so-
lutions, and subsequently aligning model and data to either
accept or reject matches is a common theme in many algo-
rithms [10, 8].

Typically, the size of the key feature is equal to the min-
imum number of paired points necessary to constrain the
transformation: in our case k = 4. However, local search has
an important aspect missing from typical algorithms: points

may be dropped from the match. In part as a consequence of
this ability to drop as well as add points, empirically we’ve
observed local search performing better performance with
k = 5.

4. Results

Random starts and key feature local search where tested
on four data sets drawn from real imagery. The simplest
imagery showed an irregular polygon printed in black on
white paper. Another imagery set showed a framed, ab-
stract, painting hanging on a wall. The third set shows a
text book lying on a table. The fourth set was composed
of two images drawn from aerial photographs of Fort Hood
[5]. Points where extracted from the test imagery using the
corner detector provided as part of Intel’s OpenCV library
[9]. Matching problems where create by pairing every point
set with every point set produced from the same set of im-
agery, including itself.

Each point set from the polygon imagery contained be-
tween 9 and twelve points. The four images of the picture
produced from 14 to 16 points each. Both the polygon and
the picture imagery produced point matching problems that
effectively contained no clutter, and where each point had
very little associated noise. In these problems the majority
of points in each image had a match in the other. The six
images taken of the text book where qualitatively different.
These images produced between 39 and 53 points, and these
points contained a great deal more noise. Although most
points in each point set continued to match, approximately
one-fourth in each match. This additional clutter signifi-
cantly raises the difficult of point matching. The two im-
ages of Fort Hood produced 65 and 67 points respectively,
and also contained significant amounts of noise and clutter.

In order to provide a visual assessment of the effective-
ness of local search on each problem, the imagery used to
produce each model set was transformed by the optimal
pose found, and compared against the imagery used to pro-
duce the data set. Figure 1 shows typical results for both
types of local search.

4.1. Results for Random Starts Local Search

Both forms of local search proved capable of solving all
problems drawn from the book and polygon imagery. Ten
thousand trials of random starts local search where run on
each of these problems with the global optima being found
many time. Based on this the failure rate fr of local search
for these problems, and for thus the expected number of tri-
als required to achieve 99% confidence in the result, can
be estimated as t∗ = log(0.99)/ log(fr). Problems from the
polygon imagery generally required less than 1000 trials to

Model Images

Transformed Images

Target Data Images

Figure 1. Typical Results for Local Search
Point Matching

achieve 99% confidence in the solution. On a 1GHZ Pen-
tium III machine this requires under a second. Problems
from the picture imagery where substantially easier, with t∗

less than 1800 in all cases. The increased size of the point
sets does increase run times, and these problems required
on average, about five seconds to solve. Random starts lo-
cal search was also run on the text book imagery, this time
with 100,000 trials per problem. This proved sufficient to
solve most, but not all, problems at least once. Based on the
results for those problems which where solved it appears
that these problems require about a half million trials to be
reliably solved.

4.2. Results for Key Feature Local Search

Key Feature local search was run on all data sets. This
algorithm solved every problem in the polygon and picture
problems sets searching only the first five entries on the key
feature list, in most cases the top ranked key feature, the one
with lowest Ematch score, lead to the global optima. In such
cases local search can be run in well under a second. Key
feature local search also proved capable of solving many
problems from the text book imagery. In most cases, the
first entry on the key feature list resulted in the global op-
tima being found. In seven cases the first key feature to re-
sult in the global optima being found was significantly fur-
ther down the list. In three of these cases the first success-
ful key feature was within the first sixty entries on the list.
In the remaining four the only successful key feature was
found later than position 10,000 on the list. The two prob-
lems taken from the Ft. Hood imagery where also solved by
key feature starts local search, in one case with the key fea-
ture ranked 720, the other with a key feature ranked below
90,000.

Both random starts and key feature local search failed to
solve every problem taken from the book imagery, but they
did not solve exactly the same problems. Three problems
that went unsolved by random starts local search where
solved by the key feature algorithm, and key feature lo-
cal search failed to solve two problems for which random
starts found the global optima. This is consistent with what
should be expected from the algorithms. In theory random
starts can solve every key feature local search can by choos-
ing at random an initial solution which corresponds to a suc-
cessful key feature. In those cases where clutter and noise
prevent any successful key feature from being formed it is
still possible that some combination of pairings could be a
successful initial solution.

5. Conclusion

Point matching under the projective transform is useful
in contexts where points derive from co-planar 3d features:

for example registering aerial photographs. The algorithms
presented offer a fairly general and robust means of solv-
ing such problems. In most cases, key-feature starts lo-
cal search can solve problems involving a large number of
points by searching only a small portion of its key feature
list. In situations where this fails, the more expensive but
theoretically more general random starts local search algo-
rithm frequently can find the optimal match, and in theory
it will always do so given sufficient trials.

More images from and details of
these experiments can be found at
http://www.cs.colostate.edu/∼denton/pointmatching

References

[1] H. Baird. Model-based Image Matching Using Location.
PhD thesis, Princeton University, oct 1984.

[2] R. J. Beveridge. How easy is matching 2d line models using
local search? T-PAMI, 19(6), jun 1997.

[3] T. M. Breuel. Fast recognition using adaptive subdivisions
of transformation space. In CVPR, pages 445–451. IEEE,
1992.

[4] T. Cass. Polynomial-time object recognition in the presence
of clutter, occlusion, and uncertainty. ECCV, 92:834–842,
1992.

[5] D. Gerson and S. Wood. Radius phase ii - the radius testbed
system. In Arpa Image Understanding Workshop, pages
231–237, Monterey,CA, nov 1994.

[6] A. Goshtasby and G. C. Stockman. Point pattern matching
using convex hull edges. IEEE Transactions on Systems,
Man, and Cybernetics, 15(5):631–637, 1985.

[7] R. Hartley and A. Zisserman. Multiple View Geometry in
Computer Vision. Cambridge University Press, 2000.

[8] D. P. Huttenlocher and S. Ullman. Recognizing Solid Ob-
jects by Alignment with an Image. International Journal of
Computer Vision, 5(2):195 – 212, November 1990.

[9] Intel. Intel open source computer vision library. Software,
2000. http://www.intel.com/research/mrl/research/opencv/.

[10] D. G. Lowe. Perceptual Organization and Visual Recogni-
tion. Kluwer Academic Publishers, 1985.

[11] C. H. Papadimitriou and K. Steiglitz. Combinatorial Opti-
mization Algorithms and Complexity, chapter Local Search,
pages 454–480. Prentice-Hall, Englewood Cliffs, NJ, 1982.

