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Abstract

In an ideal situation the requirements for a software system should be completely and un-
ambiguously determined before design, coding and testing take place. In actual practice, of-
ten there are changes in the requirements, causing some of the software components to be re-
designed, deleted or added. Higher requirement volatility will cause the resulting software to
have a higher defect density.

In this paper we analytically examine the influence of requirement changes taking place dur-
ing different times by examining the consequences of software additions, removal and modi-
fications. We take into account interface defects which arise due to errors at the interfaces
among software sections. We compare the resulting defect density in the presence of requirement
volatility, with defect density with that would have resulted in an ideal situation where initial
requirements are perfect. The results show that if the requirement changes take place closer to
the release date, there is a greater impact on defect density. In each case we compute the de-
fect equivalence factor representing the overall impact of requirement volatility. Further work
required to obtain an overall model that can be used in an empirical model for defect density,
is mentioned.

1 Introduction

Defect density is an important measure of software quality, one which is often used as an
acceptance criteria for a piece of software. For this reason it is desirable to understand how
various aspects of the development process impact defect density, so they can be controlled or
at least used to gain a better understanding of product reliability. The maturity of the devel-
opment process, the skill of the programmers involved, and the complexity of the program all
play a significant part in the defect density of a program [3]. Studies suggest that changes to the
requirements specification also have a significant impact on defect density [13].

Requirements volatility is a measure of how much program’s requirements change once cod-
ing beings. Projects for which the requirements change greatly after coding begins have a high
volatility, while projects whose requirements are relatively stable have a low volatility [2, 10,
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11, 12]. The analysis presented here shows that the time at which requirements changes are
made is a significant factor in program defect density. Changes made late in the development
cycle can not only waste development resources, but also reduce the overall testing effective-
ness.

Requirements specifications are often written in natural language. Even when more precise
techniques are used these specifications tend to change as program development and testing pro-
gresses. Often new requirements are added and existing requirements are modified or deleted.
As a response to these changes, the program is also modified. Here we present an analysis
of how requirements volatility affects a project by examining program evolution in terms of
changes to the code base. This is a topic first examined by Musa et al. in [7], where they ex-
amined how continuing program evolution violates the usual assumptions made by the stan-
dard software reliability growth models, and how corrections to the procedures can be made.
Changes made to requirements must eventually be reflected in the code, and developing orga-
nizations can, over time, develop a feel for how particular changes in their requirements spec-
ifications impact their code. In this paper we related how changes to the code effect the over
all defect density. In our analysis we assume that that software has been modified as a response
to the changing requirements, however the modification process is imperfect. To keep analy-
sis tractable, we assume that debugging for individual defects is perfect. In actual practice, a
fraction of the bugs are incorrectly debugged. Ohba and Chou have shown that in such a case a
reliability growth model is still applicable, although imperfect debugging cause some variation
in the parameter values [8].

In this paper we evaluate the impact of code changes on the defect density by considering four
separate cases. In the next section, we consider the the simplest case when a block of code is
replaced by a newly developed block of the same size. We mention two significant assumptions
made and show how they can be relaxed for more accurate calculation. In section 3, we consider
those cases where a section of the software is added, when a new component is added and when
a component is modified. In each case we compute the resulting additional defect density. We
also obtain a multiplicative factor to obtain equivalent initial defect density. Finally we suggest
a preliminary model that can be used as part of a static model for estimating defect density.

2 Same Sized Code Replacement

Here we consider the relatively simple problem of estimating defect density in a software
system, when a component is replaced by a new block of the same size. We assume that the
original system had a defect density of D0 at the time t0 � 0. Here the instant t0 can be regarded
as the time when the system enters a specific testing phase. At time t1 a component is replaced
by new code. We assume that the new code enters with defect density D0.

The exponential reliability growth model [5] assumes that the rate of defect removal
dN
dt

is

proportional to the number of defects N
�
t � present at time t.

dN
�
t �

dt
� β1N

�
t � (1)

where t is testing time. Note that t may or may not be closely related to calendar time depending
on how resources are allocated in a project.
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It can be shown that the parameter β1 can be expressed as [4]

β1
� kr

SQ
(2)

where S is the total number of source instructions, Q is the number of object instructions per
source statement and r is the instruction rate of the CPU used. The parameter k is called fault
exposure ratio, which has been found to be in the range of 1 � 107 to 10 � 107.

If N0 is the number of defects present at time t0, then from equation 1

N
�
t � � N0e � β1t t0 � t � t1 (3)

or equivalently in terms of defect density D
�
t �

D
�
t � � D0e � β1t (4)

since D
�
t � S � N

�
t � .

Now let us assume that the fraction of the code replaced is p. Thus at t1, the number of defects
remaining in the old code is

N1
� N0

�
1 � p � e � β1t1 � D0S

�
1 � p � e � β1t1 (5)

and the number of defects in the new code is

N2
� D0Sp (6)

If there is no future evolution of the software, except for removal of defects found, then then

N
�
t � � �

N1 � N2 � e � β1 � t � t1 	 t1 � t (7)

Notice that β1 depends on the size, however since that total size has remained the same, β1
remains unchanged. Equation 7 can be written as

N
�
t � � D0S 
 � 1 � p � e � β1t1 � p � e � β1 � t � t1 	 t1 � t (8)

If testing is to be terminated at time t f , the final number of remaining defects is

N f
� D0S 
 � 1 � p � e � β1t1 � p � e � β1 � t f � t1 	 (9)

and the final defect density is

D f
� D0 
 � 1 � p � e � β1t1 � p � e � β1 � t f � t1 	 (10)

The influence of the change occurring at time t1 is shown in Figure 1. While further testing
reduces the number of new defects injected at t1, the software still ends up with a higher number
of defects at the end of testing at time t f .

We can compare D f with D f i, final defect density in the ideal case. The difference
�
D f � D f i �

gives the additional defect density Dadd due to requirement volatility.

Dadd
�
t1 � � D0 p 
 e � β1 � t f � t1 	 � e � β1t f � (11)
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Figure 1. The impact of change on Defect Density

For a given stopping time t f , Dadd is a function of t f � t1, ie. closeness of the change time
to the stopping time. This is illustrated in Figure 2. The values used for the plots in Figure 2
assume an initial defect density of 20/KLOC and it is assumed that testing for 3000 time units
will reduce the defect density to approximately one tenth.

Equation 10 shows that the change at t1 results in higher defect density D f . Here let us define
equivalent initial defect density D #0 which would have yielded the same D f without the change
at t1. We can rewrite equation 10 as

D f
� D0 
 � 1 � p � e � β1t1 � p � eβ1t1e � β1t f (12)

Hence
D #0 � D0 
 � 1 � p � e � β1t1 � p � eβ1t1 (13)

Thus the change is effectively equivalent to multiplying the defect density by the defect equiv-
alence factor (DEF) ed

ed
�
t1 � � �

1 � p � � peβ1t1 (14)

Figure 3 gives a plot of ed againt t1, the point in time when the change takes place. Figure
4 gives a table of ed for different values of t1 and p, the fraction of the code involved. The
table shows that replacing 10% of the code at time 500 causes only a 4.2% change in the defect
density whereas the same change at time 2500 causes a 47.5% change. The influence of p is
linear, a p=5% change at t1=1500 results in a 9.3% increase, a p=15% change causes 27.9%
increase.

In the above discussion we have made two simplifying assumptions. Here we will see that it
is possible to obtain more accurate expressions.

Assumption 1: We assumed that the testing time duration, from 0 to t f is fixed. In actual
practice, the exact effort needed for developing the new code (and for separately testing it to get
its defect density to D0) may subtract from the available time. We can assume that this additional
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Figure 2. Additional defect density due to change at t1

effort is proportional to the size of the code replaced. Then the duration t f is effectively replaced
by t #f such that

t #f � t f � a � p � s (15)

where the parameters a would depend on the specific software development and testing process.
Assumption 2: We assume that the number of defects associated with the new code is pro-

portional to its size. This means that we are assuming that the number of defects related to the
coupling of the old code to the new code is negligible. The degree of coupling is perhaps mea-
sured by the number of variables passed. If a module with a well defined interface with the rest
of the code is replaced with new code, then the number of new interface defects introduced will
be small. However, if the new code interacts with old code using a large number of variables,
then the number of interface defects will be significant.

Let us assume that the number of variables passed from the old code to the new code and vice
versa is m. Then the number of interface defects Nint can be given by

Nint
� b1m (16)

where b1 is a constant of proportionality. Then we can rewrite equation 8 as

N
�
t � � D0S 
 � 1 � p � e � β1t1 5 p � e � β1 � t � t1 	 � b1m (17)

The correction term will be significant if the number of variables is very large, or if the rest
of the software has a very low defect density.

3 Code addition, removal and modification

In the previous case, the overall software size had remained unchanged. Here we consider
the cases when the software size changes as a response to the requirement volatility. We the
parameter β1 of the exponential model, depends on the size. In case of code modification, the
number of interface defects can become quite significant.
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Figure 3. DEF (Defect equivalency Factor) due to code replacement

Replacement time t1
Fraction p 0 500 1000 1500 2000 2500 3000

0.05 1.000 1.021 1.051 1.093 1.153 1.238 1.358
0.10 1.000 1.042 1.101 1.186 1.306 1.475 1.717
0.15 1.000 1.063 1.152 1.279 1.458 1.713 2.075

Figure 4. DEF ed due to code replacement

3.1 Addition of New Code

Let us now consider the case when at time t1 new code is added, perhaps to implement ad-
ditional functionality. Let us assume that the size of the added code is p times the size of the
original code, and when the addition occurs the defect density of the added code is D0. Then at
time t1, the total number of defects in the system is

N
�
t1 � � S0D0e � β1t1 � S0 pD0 (18)

Here we should note that the parameter β1 depends on program size, as given by equation 2.
The corresponding parameter β1a for the altered system is given by

β1a
� kr�

1 � p � SQ
� 1

1 � p
β1 (19)

Then we can write

N
�
t � � D0S 
 e � β1t1 � p � e � β1a � t � t1 	 t1 8 t (20)

In an ideal case the added functionality should have been present from the beginning, and the
number of defects NI

�
t � would have been

NI
�
t � � D0S

�
1 � p � e � β1at (21)
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Thus the added defect density due to the requirement volatility is

Dadd
�
t1 � � 1

s
�
1 � p � 
N �

t f �9� N1
�
t f ��� (22)� D0

1 � p

 e � � β1 � β1a 	 t1 � peβ1at1 � �

1 � p ��� e � β1at f (23)

Figure 5 shows the additional defect density due to adding code later at time t1 instead of
including it from the beginning. This suggests that if code is added immediately after time t � t0,
the influence on resulting defect density is relatively small. The defect equivalency factor is this
case is

ed
� �

e � β1t1 � p � eβ1at1

1 � p
(24)
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Figure 5. DEF due to adding code at t1

Here no correction would be required to t f because we are assuming that the additional code
is required and it is added at time t1 rather than at t � 0; and thus no additional development
time is needed. We have assumed here that the number of interface defects is small compared
to internal defects of the software being added. This may not be valid in cases where the added
modules may have significantly low defect density. This may happen when the new code being
added is drawn from library modules or represents reused code. In that case, interface defects
will be significant and may even dominate the additional internal defects. We can then rewrite
20 as

N
�
t � � 
D0Se � β1t1 � D #0Sp � Nint � e � β1a � t � t1 	 t1 8 t (25)

and the expression for ed would be

ed
� �

D0Se � β1t1 � D #0Sp � Nint � eβ1at1

D0S
�
1 � p � (26)
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where D #0 is the defect density of the added code. Nint may be estimated using the approach
given in the next section.

3.2 Code Removal

The third case we consider is when part of the code is removed, perhaps due to deletion of
some requirements. In the ideal case, this code would not have been added in the first place.
Removing a section of the code will eliminate all defects in it. However, all linkage between
existing code and deleted code must be removed or redirected. Mistakes in this part of the re-
moval process will generate Nint additional defects. We can expect that

Nint
� b2m (27)

where m is the number of linkage variables affected and b2 is a parameter. For a preliminary
computation, we can assume that m is proportional to the size of code removed (pS) and the
parameter b is proportional to D0. We can thus assume that

Nint
� c1PSD0 (28)

where the parameter c1 depends to relative occurrence rate of interface defects as opposed to
internal defects. We can expect c1 to be significantly less than one.

If at time t1, fraction p of the entire code is removed, then the number of remaining defects
will be

N
�
t1 � � D0S

�
1 � p � e � β1t1 � Nint (29)

Since the code size is now only S
�
1 � p � , the applicable parameter β1d is given by

β1d
� kr

S
�
1 � p � Q � β1

1 � p
(30)

and the defect density will be given by

D
�
t � �;: D0e � β1t1 � Nint

S
�
1 � p �=< e � β1d � t � t1 	 (31)

t > t1 (32)

In an ideal case, the deleted code would not have been present from the beginning, and the
defect density would have been

D1
�
t � � D0e � β1dt (33)

Then, the additional defect density is

Dadd
�
t1 � � D0

�
e � β1t1 5 β1dt1 � 1 � e � β1dt f � Nint

S
�
1 � p � e � β1d � t f � t1 	 (34)

The density equivalency factor can be obtained as

ed
�?: e � β1t1 � Nint

S
�
1 � p � 1

D0 < eβ1t1 (35)
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Figure 6. DEF due to code removal vs. t1

Figure 6 shows an exponential relationship between the time and the defect equivalency fac-
tor. In Figure 7 three plots show the effect of variation of p with t1 equal to 1000, 2000 and 3000
time units respectively. The plots show that at the beginning p does not have much influence.
However when removal is done closer to t f , the fraction has a significant impact on defect den-
sity. Figure 8 shows variation in DEF due to change in parameter c1. For changes made very
early, DEF remains relatively unaffected by changes in c1, however closer to t f , there is linear
dependence.

Here these equations do not take into account the fact that not implemented the unneed code
would have saved the effort which would allow a larger testing time t f .

3.3 Modified Code Block

Here we consider the relatively complex case when a part of the code is modified as a response
to requirement changes. The modification will in general include removing some instructions,
adding some instructions, and modifying some instructions. Let us assume that the removed
and added instructions represent fractions p1 and p2 of the original code size S respectively.
Let us assume that modifying instructions amounts to replacing them with new instructions.
The errors introduced at time t1 are contributed due to new instructions added as well as due
to improper handling of linkage. Let us assume that the number of linkage instances affected
is m. Because a variable can be redefined and used many times, m can significantly exceed the
number of variables involved.

The number of defects at time t1 is given by

N
�
t1 � � S

�
1 � p1 � D0e � β1t � p2SD #0 � Nint (36)

where Nint is the number of interface defects given by

Nint
� b3m (37)
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Figure 7. DEF due to code removal vs. p

Again for preliminary calculations, we can assume that m is proportional to the size of soft-
ware added plus the size of software removed (p1 � p2 � S and parameter b3 is proportional to
D0. We can then write

Nint
� c2

�
p1 � p2 � SD0 (38)

where the value of parameter c2 is likely to be higher than c1 for the previous case because
of a higher degree of linkage.

Using Equation 36, we can write,

N
�
t � � 
 S � 1 � p1 � D0e � β1t � p2SD #0 � Nint � e � β1mt � t1 t > t1 (39)

where D #0 is the defect density of the new code inserted. We assume that it is inserted without
any prior testing and hence would have a defect density higher than D0. Also,

β1m
� Kr

S
�
1 � p1 � p2 � Q � β1

1 � p1 � p2
(40)

In the ideal case, all the code needed would have been there at the beginning. Thus,

NI
�
t f � � S

�
1 � p1 � p2 � D0e � β1mt f (41)

The the additional defect density at time t f can be obtained using this equation.

Dadd
� N

�
t f �H� NI

�
t f ��

1 � p1 � p2 � S (42)

The DEF is given by
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Figure 8. DEF due to code removal, plotted against c1

ed
� S

�
1 � p1 � D0e � β1t � p2SD #0 � Nint�

1 � p1 � p2 � SD0
(43)

Figure 9 shows a plot of ed against t1 for three pairs of values
�
p1 K p2 � =(0.1,0.1), (0.05,0.15),

(0.15,0.05). As expected, the lower curve corresponds to the case when more code is deleted
than added. However it can be observed that the tree curves are quite close together suggesting
that for values assumed, interface defects inserted due to both added and removed code signifi-
cantly affect the overall defect density. If a large part of a software module needs to be revised,
in many cases it will be better to redo it from the beginning in order to avoid the interface de-
fects. Note that because of significant number of interface defects, DEF is be larger than one
even when the modification is made near the beginning.

4 Discussion

Above we have examined possible types of individual changes made at a time t1. Generally
in a project all these kinds of changes are made at different times. We would like to be able to
combine these results to come up with a description of the overall process using a reasonably
simple model. Some data is now available [12, 11] that give insight into typical process that
might be encountered. Further investigations are needed to obtain a model that will represent
requirement volatility as a factor in a multiplicative model for defect density [9, 3, 1]. It is easy
to see from the results that the dependence on t1 is exponential although in some special cases
a liner approximation may be justified.

Often requirement volatility and hence changes in a the software are distributed over a pe-
riod of time. It may be possible to lump the affect of such distributed events into one or more
equivalent events for the ease of computation, a technique that is used in modeling solid-state
silicon devices. The objective will be to obtain a model that is simple and still yields accurate
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Figure 9. ed due to code modification, plotted against t1

estimates, perhaps after some calibration of parameters.
Here we have assumed that the development is in a test phase. Often some form of checking

precedes such testing. For example, inspections can reveal defects early during the development
process. It may be possible to regard such checking as testing, although clearly the values of the
parameters will be different. It may be possible to reformulate the above results for application
during the early phases when inspection and code walk-through are used.

5 Conclusions

Here we have analyzed the influence of changes in a program when testing has already been
initiated. We have examined the effect of replacing a component with another component of
the same size, as well as general cases when software is added, deleted and modified. All the
results show that changes have more influence on defect density when they occur closer to the
end of the testing effort. This temporal dependence is generally exponential. Changes made
very early can be relatively inconsequential, but those occurring later can raise defect density
quite significantly.

We have seen that in some cases, we must consider the interface defects to take into account
the interaction among software blocks.

Further work is needed to come up with a general model that will relate a few measures that
can be easily evaluated or estimated to the overall defect density. This will require a study of
typical patterns of requirement changes over time.
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