
Software Engineering as Technology Transfer

Daniel Cooke and Jason Denton
Department of Computer Science and the Center for Advanced Intelligent Systems

Texas Tech University
{daniel.cooke}, {jason.denton} @coe.ttu.edu

Abstract

We propose, as a challenge to the software engineer-
ing research community, a new view of software engineer-
ing as technology transition. In this view, the role of soft-
ware engineering is to take the initial results of theorists
and harden these results to the point where they are ready
to be used in fielded, commercial systems. Current tech-
niques for software verification, while adequate for serial,
non-critical systems, are not sufficient to deal with verifica-
tion and validation of parallel, concurrent, and embedded
systems. We examine how the software development process
might be modified by this view of software engineering as a
process to migrate new technology to systems ready for use
in high reliability environments.

Keywords: Technology Transition, Software Systems
Hierarchy

1. Introduction

In recent years many people in the software engineering
research community have been devoted to formulating mod-
els for the evaluation and improvement of the development
process of large scale software projects [7, 15]. This work
has largely focused on applications to meet and support var-
ious business and information processing needs; systems
which are largely serial and relatively non-critical in na-
ture. Such systems and the techniques for building them
are fairly well understood by software engineers. There
remains a need, however, for techniques to transition new
software technology from laboratory products to robust, de-
livered systems. Here, we propose a more comprehensive
approach to software engineering that addresses this need
for technology transition. We model this approach on the
technology readiness levels used by NASA [14] and attempt
to incorporate the following considerations and influences,
relevant to software development, in the challenge we pro-
pose:

• The impact ofTechnology Transition;

• The impact of a hierarchy ofValidation and Verifica-
tion requirements for differing classes of problems;

• The impact ofteaming and compartmentalizationon a
development project; and

• The impact ofSoftware Architecture.

2. The Technology Transition Context

NASA defines nine technology readiness levels, span-
ning the range from basic research to systems which are
ready for launch and flight [14], as shown in figure 1. Lab
products or prototyped systems and initial theoretical re-
sults reside in the first three technology readiness levels.
At levels four through six products are developed and ma-
tured, becoming capable of addressing a wider class of
problems of interest to problem domain experts. As tech-
nology reaches the point where it can be built into produc-
tion quality flight systems and sub-systems it enters TRL
seven, becoming ready for flight and launch at levels eight
and nine.

Roughly speaking, one can project three basic regions of
technology readiness. As an example, consider some recent
advances in logic programming. Recently, theorists focused
on logic programming advanced an important result, called
action-based reasoning [10]. The initial result by Gelfond
and Lifschitz was able to show progress on problems of
theoretical interest to the logic programming community.
This initial result is a lab product, residing in the first re-
gion of technology readiness. A lab product does not ap-
proach production quality. Efforts to transition the results
have resulted in a mid level product (in the region from 4-6)
that can be applied to more elaborate problems; problems of
interest to people working in a particular problem domain.
In the case of action-based reasoning, the result has under-
gone significant hardening to the point that it is now being
used to discover work-around’s in the event of some subsys-
tem failures on the Space Shuttle [2]. These work-around’s

1



Figure 1. NASA Technology Readiness Levels

are normally discovered by Mission Controllers in Hous-
ton. These results have gained the interest of problem do-
main practitioners. If the resulting technology demonstra-
tions are compelling enough, efforts to further harden the
result to production quality will be undertaken. Once hard-
ened systems are developed to support mission controllers,
they will be analyzed to determine if subsequent versions
can be deployed on long distance missions, where substan-
tial communication delays make communication with mis-
sion controllers impossible.

In the case of the action language result, one can see de-
liverables at three points. After basic research there is a
lab product that can demonstrate solutions to problems that
are of import to the theoretical community. Transition to
the mid-TRL range hardens the product to the point that it
is possible to perform technology demonstrations within a
problem domain community. Transitioning to the highest
technology readiness levels results in a production quality
system; one that at NASA is flight ready.

The ideas put forth here extend the initial ideas of Joint
Application Development to include, in the development
teams of software engineers and problem domain experts,
researchers who have developed fundamental results appli-
cable to a problem domain.

These ideas also attempt to encompass the fact that there
are indeed different classes of software. These perceived
classes are based upon attendant validation and verification
requirements and should result in a hierarchy of software
process models. In fact a projection of these classes based
upon the regions of technology readiness is conceivable.
For example, the proofs-of-concept or prototypes arising as
lab products in regions 1-3 of technology readiness have

very low verification and validation requirements. One can
envision ground-based systems that are serial in nature in
the 4-6 regions and parallel/concurrent flight ready systems
in the 7-9 regions. It should be noted that the transition path
for a flight ready system would need thorough ground test-
ing before going to flight readiness. In the case of the action
language work, the 4-6 testing is taking place in mission
control - and the tested system is augmenting and support-
ing their efforts. Once confidence is assured, the systems
will be tested for flight readiness, beginning with simula-
tions, proceeding to experiments on unmanned platforms,
and ultimately to deployment in manned spacecraft.

3. Joint Application Development with an Ac-
cent on a Scientific Approach

People performing research in most of the physical sci-
ences will normally classify themselves as theorists or ex-
perimentalists. Most communities are organized in this
manner because the exchanges between theorists and ex-
perimentalists are the basis for scientific progress. Experi-
mentalists present observations, which theorists attempt to
condense into theories. The theories are supposed to pro-
vide an understanding of the root causes for the empirical
data, and if correct, allow for prediction of future phenom-
ena. These predictions, in turn, provide the basis for the de-
sign of future experiments. Experiments result in confirma-
tion or refutation of the theories. Improvements are made
to existing theories when observations are not explained by
a theory. Revolutionary advances occur when a new theory
results in a paradigm shift. Having an experimental coun-
terpart to a theoretical community is crucial for advancing
a science.

Computer Science lacks a pervasive, organized experi-
mental community; theories are rarely tested empirically.
The notion advanced here is that hard application domains
are a fine substitute for experiment. When competing the-
oretical approaches to a class of problems are developed
into more robust systems, they can be tested against a rel-
evant hard application and provide technology demonstra-
tions. The best application results can provide feedback to
the theoretical communities, the exchange resulting in ad-
vances otherwise difficult to accomplish.

To take an idea from a proof-of-concept lab product and
actually test it against a hard application requires a software
engineering effort that will result in a more robust system.
We believe the notion of Joint Application Development
should be expanded to include more than problem domain
experts. The theorists who developed the approach or idea
that is being taken to product should be included, resulting
in group applicationdevelopment. This is not a new idea.
Years ago, Richard Feynman, when working at Los Alamos,
was dispatched to Oakridge, where engineers were building

2



the plants to produce the materials for the atom bomb. The
engineers needed to be briefed on the theoretical aspects and
context within which they were working. After the brief-
ing, the engineers were able to correct serious problems in
their initial designs and ultimately construct the plants that
served a major role in winning World War II [9]. This kind
of group application development is essentially experimen-
tal design. Thus, software engineering as technology tran-
sition holds the potential of transforming computer science
- software engineering might eventually provide the perva-
sive, organized experimental counterpart to theoretical ef-
forts in computer science.

4. Process Models: One Size Does Not Fit All

The Group Application Development approach to soft-
ware engineering requires a different process and process-
supporting tools if it is to transition theoretical ideas to a
higher level of technology readiness. In order to be effec-
tive, process models must be tailored to their environments
and the goals of the developing team. Motorola credits pro-
cess based improvement with greatly reducing the time to
market for new products [6], when used for that purpose.
For transitioning new technologies to higher readiness lev-
els, process models should focus on verification and valida-
tion.

Software can be broken into a hierarchy of minimally
three different classes systems. As systems move up this hi-
erarchy the verification and validation requirements expand;
the verification and validation requirements for a class of
system are always a superset of those required by systems
at lower levels of the hierarchy.

4.1. Level 1: Serial, non-Critical Systems

Development of serial non-critical systems has been
extensively studied. These system include most shrink
wrapped software and data management software for busi-
nesses. Most of the literature on process models has focused
on the specification and coding of such systems. Verifica-
tion of the code is done with respect to the specification.
Clean room [13] and statistical approaches [3] to testing
software seem to suffice for software verification of these
types of systems.

4.2. Level 2: Parallel and Concurrent Systems

The problem of software quality assurance is made more
complicated by concurrent or parallel program structures.
Problems like race conditions and deadlock are unique to
the concurrent programs. The likelihood of such defects
being observed in any given run of the program may be very
low.

Traditionally, software verification is accomplished with
respect to a specification of the software. If sufficiently pre-
cise and complete, the specification serves as a mathemat-
ical model of the intended consequences of the software,
given its field of inputs. Typically, formal verification of a
program is not feasible, so statistical approaches to software
testing are utilized. Mathematical models used to determine
if a program is correct, whether by testing or by proof, are
also necessary for the verification of concurrent programs.
However, current approaches taken alone are not sufficient
for verification of concurrent programs.

The problems of concurrent design were pointed out in
Leveson’s study [12] of the famous Therac 25 accidents.
Although the Therac software was tested, a race condition
was not detected. The race condition eventually occurred
when the machine was put into use. The Therac 25 adminis-
tered the doses to patients undergoing radiation treatments.
Several of these patients died after receiving overdoses of
the radiation.

Consider the following example where two different
processes or threads alter the information stored in the
shared variabledose.

t1 t3
t2 : write dose t4: write dose

There are six possible orderings for the execution of the
instructions in these two paths.

t1t2t3t4
t1t3t2t4
t1t3t4t2
t3t4t1t2
t3t1t4t2
t3t1t2t4

Suppose instructiont4 writes the correct dose for a treat-
ment. In the configuration given there is a fifty-fifty chance
that an erroneous condition, wheret2 writes the final value
of dosage, will occur. Testing alone may not cause the error
to occur.

Sequential systems are typically deterministic, every ex-
ecution of the program on the same data performs the same
computation. Nondeterminism occurs in concurrent sys-
tems because different executions of the system may result
in different computations if instructions in different execu-
tion paths are executed in a different order.

When concurrent pathways of execution exist, there are
a number of possible orderings for execution. For the sake
of simplicity, assume all execution paths are of the same
length. Let there ben execution paths each of lengthL.
Then, the number of possible orderings for execution of
programO is given by

3



O =
(nL)!
(L!)n

(1)

The number of orderings increases dramatically with in-
creases in eithern or L. For example, whenn = 3 and
L = 2, O = 90.

Due to the nondeterminism in concurrent systems, prob-
lems like race conditions, deadlock, and starvation may not
be uncovered by testing alone. The orderings in which the
problems occur may not arise during the testing phase. To
fully scrutinize a concurrent program, one must test and
model the system. Often a separate engineering model
which focuses on some phenomena or aspect of the system
is required to analyze a program.

In the case of a concurrent program, the phenomenon
to be understood is the control and data flow view of the
program. Through this view, one can gain an understand-
ing of the concurrent behavior of the program in question.
Petri net modeling of concurrent programs provides a suit-
able approach to the discovery of problems that are unique
to concurrent programs [1, 4, 8].

4.3. Level 3: Embedded-Critical Systems

The NASA Ames Research Center has led in the devel-
opment of a neural network-based Intelligent Flight Con-
trol system [11]. To simulate the loss of an entire wing,
the test flight airplane can position an airfoil in front of the
main wing surface. This carefully positioned airfoil cre-
ates turbulence that renders the main wing ineffective, as
if it were removed from the fuselage. When the IFC soft-
ware is enabled, the pilot can regain control of the aircraft.
The IFC system is a good example of model-based auto-
mated reasoning based upon a model of flight. The system
can integrate into a fly-by-wire aircraft and learn its flight
characteristics through observation of pilot inputs and air-
craft response. In doing so, the system exemplifies intelli-
gent data understanding through its ability to establish and
learn the causal links between inputs and aircraft response.
In the future, such systems could be used to make civilian
and commercial aircraft safer and more resistant to catas-
trophic failures. The IFC software is a good example of a
class of systems that require all the previous verification and
validation steps, but also involves extensive simulation and
ultimately flight testing. These activities are a part of the
verification and validation process, and must be taken into
consideration by the software development process. This
process is further complicated by the fact that the IFC soft-
ware adapts itself to its changing environment.

5. Teaming and Compartmentalization

Complex problems are best solved by simple and ele-
gant solutions. Consequently, successful software solutions
often require invention and innovation. Much of the cur-
rent thinking and literature in Software Engineering recom-
mends the compartmentalization of the process of develop-
ing and in the substance of software solutions, together with
a division of labor that results in team efforts for software
development. But, is this thinking correct in general, or only
in particular?

The compartmentalization of the substance of a software
solution arises from the subdividing of a problem into com-
ponent or module-sized pieces considered to be more ap-
proachable for a programmer. The modules to be developed
are identified early in the project and bias the solution to-
wards an approach that is reached at a time when there has
been little opportunity to understand the problem in a man-
ner that permits multiple approaches to be considered. The
compartmentalization of the substance of a software solu-
tion is a response to a rather short-term view of the costs as-
sociated with software development and an overriding man-
agerial concern for cost containment. Does this view of
software development distill the process to the point that
more elegant, simpler, and more maintainable solutions are
less likely to be found? Are there different processes that
would enhance a project’s opportunity to invent better solu-
tions?

Ken Thompson points out that the efforts with which he
has been involved are characterized by small groups of indi-
viduals who are technically savvy and knowledgeable about
the software solution in total [5]. Thus, all members of the
group are free to offer their own approaches to the solution
and approaches can be challenged and discussed.

The compartmentalization of the process of software de-
velopment often serves to discourage developers from writ-
ing code early in the process. The main exception to this
tendency occurs when developers prototype the solution in
the requirement or specification phase in order to validate
the solution with the client. Thompson points to a differ-
ent process where different group members program proofs
of concept in order to advocate their respective technical
approaches to the solution [5]. In other words, when two
members of the group differ in their technical approaches
to the problem, they write programs that demonstrate their
approaches so that their views can be compared in a prac-
tical manner. These programs are written very early in the
process so that technical assumptions about the design can
be resolved and design can go forward with less backtrack-
ing in future phases of the project.

The teaming currently advocated for software projects
arises from the concern that the problems now being solved
are too complex for a single individual to comprehend, and

4



the total solution can exist only as the sum of the knowl-
edge held by the members of the team. Thompson is quick
to point out that at Bell Labs there are no teams and no
leaders [5]. There are only groups of individuals interacting
with one another. Apart from the issues already noted about
compartmentalization in teams, there is a philosophical con-
cern about the subjugation of the individual to the collec-
tive, and the belief that innovation typically arises from in-
dividuals not groups. Obviously Bell Labs is a unique place
and one may seriously argue that what works there may not
work elsewhere. However, curiosity leads one to wonder
whether the process makes the individuals. If more projects
were conducted in a process that freed individuals to be
more creative, perhaps similar results would be achieved
elsewhere.

6. Software Architecture

Another goal related to the technology transition process
and the associated validation and verification is the develop-
ment of a more general approach to software architecture.
It appears that many, if not most, software applications can
be developed by building a system from the inside out. By
this we mean that an application should be reduced a small
set of primitives from which one can compose atransac-
tion core. Designing a system in this manner requires a
signicant amount of thought, but facilitates a simpler and
more elegant solution to a software application. The anti-
teaming and compartmentalization organization is a critical
supporting influence on achieving the desired results of a
primitive-based application system.

After designing the primitivetransaction core, the de-
sign and implementation group can then go about build-
ing the interfaces for the system. The interfaces may be
with other software systems, controlled instruments (in the
case of realtime, embedded systems), and/or people who are
users of the system. Let’s consider a simple example of this
approach.

Suppose a word processing system is being developed.
Envision a data structure like the cellular list below:

U s e r i n p u t

Figure 2. Word Processor Data Structure

This structure, combined with information and the cur-
rent position of the cursor and mouse pointer might be
adequate for the state of the system. Primitives for
the system’s transaction core would includeselectcells,
stackoperations, removecells, and insert cells. These
primitives could also have primitive modifiers to provide
such things as font, font size, and other text modifiers like
boldface, italics, and underscore.

After defining the primitives, a developer would com-
bine some of them to compose more complex transactions.
For example, after performing aselectcellsoperation, a cut
transaction would be composed of apush(removecells).
Eventually the system would be composed to the point that
developer can focus on the system’s interfaces, answering
questions such as:

How will the user select a cell?
How will the user select an arbitrary number of contiguous
cells?
How will the user select an arbitrary number of non-
contiguous cells?
:
How will the user view the result of aninsert cells?
Etc.

Once the transaction core is established, interface issues
may be resolved with reusable objects or by building a GUI
system, also from the inside out. In either case, the architec-
ture must provide facility to combine elements of the trans-
action core, an ability to build interfaces, and the proper
protocols for linking interfaces with the reansaction core.
The general architecture is shown in figure 3.

System Interfaces - GUIS's Interfaces to other Systems

System Modules - Functional Objects

Combinations of Primitives, Transaction Core

Primitives

Figure 3. General Architecture

The approach of reducing an application to its primitives
requires careful thinking about the fundamental behavior of
the system. It is a computer science approach to system
development in that one must also consider how the primi-
tives should interact in order to compose sophisticated op-
erations.

This approach helps organize the process model for the
full system development. The interplay among the verifi-
cation and validation requirements for the application do-
main, the theoretical results to be transitioned to higher TRL
through their embodiment in the application, and the system
architecture become three important variables in process de-
velopment and execution.

Such an approach can significantly impact verification,
validation and system evolution. Simple components at the

5



core of the system are easier to test for correctness, and less
likely to be affected by high level design changes. This in-
creases system stability and reliability. Having these parts
of a system segregated, with clear boundaries, should mini-
mize the ripple effects on the transaction core resulting from
changes to the system interface. Furthermore, verification
of the transaction core might be more intensive, perhaps in-
volving formal verification.

7. Conclusion

Verification and validation of concurrent, embedded real
time systems is a difficult task. As software comes to play
a more important role in the control of vehicles and other
safety critical systems, we must extend and adapt our ex-
isting process models to meet the challenges of developing
these kinds of systems. Changes to the underlying architec-
ture of such systems, and in the organization of the devel-
oping teams, can also contribute to creating an environment
where initial lab products become ready for production sys-
tems. The ultimate challenge is to transition relevant funda-
mental research results into the software solutions in various
problem domains. It is our basic premise that this oversight
in software engineering research must be remedied for the
sake of the computer science and software engineering dis-
ciplines.

References

[1] G. Balbo, S. Donatelli, and G. Franceschinis. Understanding
parallel program behavior through petri net models.Journal
of Parallel and Distributed Computing, 15(3):171–187, July
1992.

[2] M. Balduccini, M. Gelfond, M. Nogueira, and R. Watson.
Planning with the usa-advisor. InProc. of 3rd International
NASA Workshop on Planning and Scheduling for Space,
2002.

[3] D. Banks, W. Dashiell, L. Gallagher, C. Hagwood,
R. Kacker, and L. Rosenthal. Software testing by sta-
tistical methods. Technical Report NISTIR 6129, Na-
tional Institute of Standards and Technology, Mar. 1998.
http://www.itl.nist.gov/div897/ctg/stat/mar98ir.pdf.

[4] A. T. Chamillard and L. A. Clarke. Improving the accu-
racy of petri net-based analysis of concurrent programs. In
International Symposium on Software Testing and Analysis,
pages 24–38, 1996.

[5] D. Cooke, J. Urban, and S. Hamilton. Unix and beyond: An
interview with Ken Thompson.IEEE Computer, 32(5):58–
64, May 1999.

[6] M. Diaz and J. Sligo. How software process improvements
helped Motorola.IEEE Software, 14(5):75–81, Sept. 1997.

[7] A. Dorling. Spice: Software process improvement and capa-
bility determination.Information and Software Technology,
35(6/7), June 1993.

[8] M. B. Dwyer, L. A. Clarke, and K. A. Nies. A compact petri
net representation for concurrent programs. InProceedings
of the Seventeenth International Conference on Software En-
gineering, Seattle, Washington, Apr. 1995.

[9] R. P. Feynman. The Pleasure of Finding Things Out.
Perseus, Cambridge, MA, 2000.

[10] M. Gelfond and V. Lifschitz. Representing action and
change by logic programs.Journal of Logic Programming,
17:301–321, 1993.

[11] J. Kaneshige, J. Bull, and J. J. Totah. Generic flight con-
trol and autopilot system. Technical Report AIAA-2000-
4281, American Institue of Aeronautics and Astronautics,
Dec. 1999. http://ic.arc.nasa.gov/ic/publications/pdf/2000-
0172.pdf.

[12] N. Leveson and C. S. Turner. An investigation of the therac-
25 accidents.IEEE Computer, 26(7):18–41, July 1993.

[13] R. Linger. Cleanroom process model.IEEE Software,
11(2):50–58, Mar. 1994.

[14] National Aeronautics and Space Administration, Washing-
ton, D.C. Integrated Technology Plan for the Civil Space
Program, 1991.

[15] M. Paulk, B. Curtis, M. Chrissis, and C. Weber. Capability
maturity model for software, version 1.1. Technical Report
CMU/SEI-93-TR-24, Software Engineering Institute, Feb.
1993.

6


